Measuring the effects of anthropogenic CO$_2$ emissions on global nutrient intakes

Matt Smith
Harvard T.H. Chan School of Public Health
\(\text{CO}_2 \) emissions are growing steadily

Source: IPCC (2013), Boden et al. (2016), Houghton et al. (2012)
Putting more CO$_2$ in the atmosphere

Source: IPCC (2013)
Many crops lose nutrients under 550 ppm CO$_2$

Source: Myers et al. (2014), Medek et al. (2017)
Who is affected, and by how much?

• Problem
 – Globally, our dietary supply of nutrients is dependent on CO$_2$-affected crops:

 | Nutrient | Percentage |
 |---------------------------|------------|
 | Iron (bioavailable) | 63% |
 | Zinc | 51% |
 | Protein (digestible) | 43% |

 – Poorest countries are most reliant on plants for nutrition
 – Deficiencies for these nutrients are high

• Approach
 – With current diets, remove nutrients lost under higher CO$_2$
 – Identify countries at highest risk for increased deficiency
Risk of lost nutrients in a higher-CO$_2$ world

High risk in South Asia, Middle East and Africa

Source: Myers et al. (2015), Medek et al. (2017), Smith et al. (in review), Smith and Myers (in prep.)
Risk of lost nutrients in a higher-CO$_2$ world

658M children under 5 and women of childbearing age are in moderate-to-high risk countries (27% of global total)

Source: Myers et al. (2015), Medek et al. (2017), Smith et al. (in review), Smith and Myers (in prep.)